

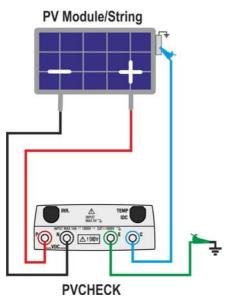
Meter for safety, functionality and performance on PV plants Pag 1 of 6

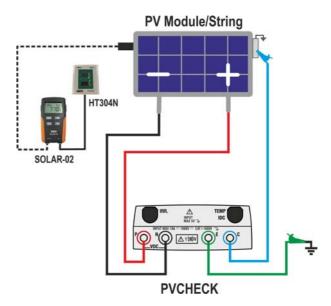
The multifunction instrument PVCHECK performs prompt and safe electrical checks required for a PV system (DC section) and controls of the functionality of modules / strings in accordance with IEC/EN62446 guideline

PVCHECK: safety checks

PVCHECK verifies the continuity of the protective conductors (and associated connections) and measures the insulation resistance of the active conductors on a module, a string, or a photovoltaic field in accordance to IEC/EN62446 guideline, without the need of any external switch to short-circuit the positive and negative terminals.

Direct measurement of insulation resistance of a PV Field not connected to ground

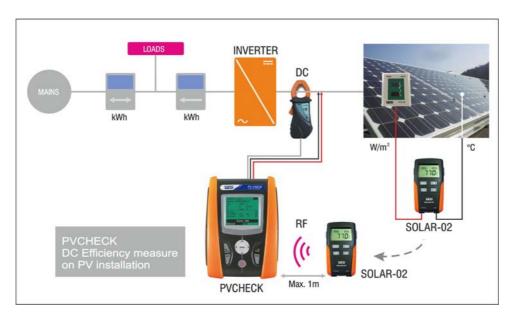




Meter for safety, functionality and performance on PV plants Pag 2 of 6

PVCHECK: functionality checks

PVCHECK verifies the functionality of a PV string in accordance to the IEC/EN62446 guideline by measuring the open circuit voltage and the short-circuit current at operating conditions and extrapolating the results to the STC (by measuring the solar radiation). Finally, it displays the measurements and a comparison to the PV strings previously tested.



Test IVCK – Automatic measurement of Voc, Isc + Insulation + Continuity on a PV Module/String without irradiance measurement

Test IVCK – Automatic measurement of Voc, Isc + Insulation + Continuity on a PV Module/String with irradiance measurement with optional accessories SOLAR-02 and HT304N

PVCHECK: performance checks

PVCHECK analyses the performance of a PV array (DC) under the operating conditions (connected to the inverter) displaying the generated power and the efficiency of the PV plant in accordance to the IEC/EN62446

Meter for safety, functionality and performance on PV plants Pag 3 of 6

2. ELECTRICAL SPECIFICATIONS

Accuracy is calculated as ± [% readings + (no. of digits) * resolution] at 23°C ± 5°C, relative humidity <80%HR

2.1. PERFORMANCE TEST

DC Voltage		
Range (V)	Resolution (V)	Uncertainty
5.0 ÷ 199.9	0.1	(1.0)rda (2.dat)
200.0 ÷ 999.9	0.5	\pm (1.0%rdg + 2dgt)

DC current (by mean external clamp)		
Range (mV)	Resolution (mV)	Uncertainty
-1100 ÷ -5	0.1	$\pm (0.5\%$ rda $\pm 0.6m)()$
5 ÷ 1100	0.1	\pm (0.5%rdg + 0.6mV)

DC current is always positive ;DC current zeroed if the related voltage value is < 5mV

FS DC clamp [A]	Resolution [A]	Minimum read value [A]
1< FS ≤ 10	0.001	0.05
10< FS ≤ 100	0.01	0.5
100< FS ≤ 1000	0.1	5

DC Power (Vmeas > 150)	/)		
Clamp FS (A)	Range (W])	Resolution (W)	Uncertainty
1< FS ≤ 10	0.000k ÷ 9.999k	0.001k	$\pm (1.5\%$ rdg + 3dgt)
10< FS ≤ 100	0.00k ÷ 99.99k	0.01k	(Imeas < 10%FS) ±(1.5%rdg)
100< FS ≤ 1000	0.0k ÷ 999.9k	0.1k	(Imeas ≥ 10%FS)

Irradiance (by mean HT304N)			
Range (mV)	Resolution (mV)	Uncertainty	
1 ÷ 40.0	0.02	±(1.0%rdg + 0.1mV)	

Temperature (by mean PT300N)			
Range (°C)	Resolution (°C)	Uncertainty	
-20.0 ÷ 100.0	0.1	± (1.0%rdg +1°C)	

Meter for safety, functionality and performance on PV plants Pag 4 of 6

2.2. FUNCTIONALITY TEST

DC Voltage @ OPC		
Range (V)	Resolution (V)	Uncertainty
5.0 ÷ 199.9	0.1	(1.0)/rda (2dat)
200 ÷ 999	1	\pm (1.0%rdg+2dgt)

Minimum VPN voltage to start the test: 15V

DC Current @ OPC		
Range (A)	Resolution (A)	Uncertainty
0.10 ÷ 10.00	0.01	±(1.0%rdg+2dgt)

DC Voltage @ STC		
Range (V)	Resolution (V)	Uncertainty
5.0 ÷ 199.9	0.1	(4.00) rdg (2dgt)
200 ÷ 999	1	±(4.0%rdg+2dgt)

DC Current @ STC		
Range (A)	Resolution (A)	Uncertainty
0.10 ÷ 10.00	0.01	±(4.0%rdg+2dgt)

Irradiance (by mean HT304N)		
Range (mV)	Resolution (mV)	Uncertainty
1 ÷ 40.0	0.02	±(1.0%rdg + 0.1mV)

Temperature (by mean PT300N)			
Range (°C)	Resolution (°C)	Uncertainty	
-20.0 ÷ 100.0	0.1	± (1.0%rdg +1°C)	

Meter for safety, functionality and performance on PV plants Pag 5 of 6

2.3. SAFETY TEST

Continuity Test (LOWΩ)		
Range [Ω]	Resolution [Ω]	Uncertainty
0.00 ÷ 1.99	0.01	
2.0 ÷ 19.9	0.1	±(2.0%rdg + 2dgt)
20 ÷ 199	1	

Test current >200mA DC up to 2 Ω (test leads included), Resolution 1mA, Uncertainty ±(5.0%rdg + 5dgt) Open loop voltage 4 < V₀ < 10V

Insulation Test (M Ω) – Mode TIMER					
Test voltage [V]	Range [MΩ]	Resolution [M Ω]	Uncertainty		
250, 500, 1000	0.01 ÷ 1.99	0.01			
	2.0 ÷ 19.9	0.1	\pm (5.0%rdg+ 5dgt)		
	20 ÷ 199	1			
Open voltage: Short circuit current:	< 1.25 * nominal test voltage <15mA (peak) for all test volt				

Generated voltage Test current Resolution 1V, uncertainty \pm (5.0%rdg + 5dgt) @ Rmis> 0.5% FS

> 1mA with load = $1k\Omega x$ Vnom

Insulation Test (MΩ) – Mode FIELD (*), STRING (**)					
Test voltage [V]	Range [M Ω]	Resolution [MΩ]	Uncertainty (***)		
250	0.1 ÷ 1.9	0.1			
	2 ÷ 99	1			
500	0.1 ÷ 1.9	0.1	(20.0) rds. Edst)		
	2 ÷ 99	1	\pm (20.0%rdg+ 5dgt)		
1000	0.1 ÷ 1.9	0.1			
	2 ÷ 99	1			
(*) For FIELD mode	if VPN >1V the minimum volt	age VEP and VEN for the calc	culation of Ri(+) and Ri(-) is 1V		

(*) For FIELD mode (**) For STRING mode Open voltage Short circuit current Generated voltage Rated current measured

minimum VPN voltage to start the test: 15V

<1.25 x nominal test voltage < 15mA (peak) for each test voltage

resolution 1V, accuracy \pm (5.0% reading + 5 digits) @ Rmis> 0.5% FS

> 1mA with 1k Ω @ Vnom

add 5 dgts to the accuracy if
$$\frac{\max\{R^+, R^-\}}{\min\{R^+, R^-\}} \ge 100$$

(***) For FIELD mode:

Meter for safety, functionality and performance on PV plants Pag 6 of 6

128x128pxl custom LCD with backlight

3. GENERAL SPECIFICATIONS

DISPLAY AND MEMORY: Features:

Memory:	max 999 test
POWER SUPPLY:	
PVCHECK internal power supply: Battery life: SOLAR-02 power supply: SOLAR-02 max recording time (@ IP=5s):	6x1.5V alkaline batteries type LR6, AA, AM3, MN 1500 approx.120 hours (DC efficiency test) 4x1.5V alkaline batteries type AAA LR03 approx. 1.5h

OUTPUT INTERFACE

PC communication port: optic Interface with SOLAR-02: wirel

optical/USB wireless RF communication (max distance 1m)

MECHANICAL FEATURES

Size (L x W x H):	
Weight (batteries included):	

235 x 165 x 75mm 1.2kg

ENVIRONMENTAL CONDITIONS:

GENERAL REFERENCE STANDARDS:

Safety: IEC/EN61010-1 Safety of measurement accessories: IEC/EN61010-031 Measurements: IEC/EN62446 (PV performance, IVCK) IEC/EN 61557-1, 2, -4 (LOWΩ, MΩ)) Insulation: double insulation Pollution dearee: 2 Overvoltage category: CAT III 300V to ground Max 1000V DC among inputs P, N, E, C Max height of use: 2000m

This instrument complies with the requirements of the European Low Voltage Directives 2006/95/EEC (LVD) and EMC 2004/108/EEC